UTILITY ANALYSIS

SOMA SAHA

THEORY OF CONSUMER BEHAVIOUR

- Theory of demand starts with individual consumer
- Market demand derived from individual demand (Micro, not Macro concept)
- What is market?
- Assumptions:

Rational Consumer
Axiom of Utility Maximisation
Complete Information (all available commodities, prices, income)

- Thus, comparison of utilities from different baskets or bundles
- Two approaches: Cardinalist and Ordinalist

CARDINAL AND ORDINAL UTILITY

- Cardinal Utility: subjective, measurable

Gossen (I854), Jevons (I87I), Walras (I874), Marshall (I890) Monetary units or 'utils'

- Ordinal Utility: cannot be 'measured', but can be ordered

Ordinal magnitude
Suffices for a consumer to 'rank' bundles
Doesn't matter whether $(30,40)$ or $(300000,400000)$
Order of preference
IC and RP

CARDINAL UTILITY THEORY

- Assumptions

Rationality

Cardinal Utility (money or utils)
Constant MU of money (justifiable?) : standard cannot be subjective, measuring rod cannot be elastic

Axiom of Diminishing MU
$T U$ is $U=f(x 1, x 2, \ldots, x n)$ [additive in earlier versions]

TU AND MU

- Rasogolla: 0,1,2,3,4,5,6,7
- TU: 0, 20, 35, 45, 50, 50, 45, 35
- MU: Satiation point
- Plot and see
- Relation between Total and Marginal
- Law of Diminishing MU (Graphical representation?)
- Gossen's First Law
- Limitations or Qualifications (ceteris paribus: tastes, prices; homogenous units; continuity; suitable size units ; rationality (lexicographic preference?); ordinary goods; divisibility (how to treat say coke and sofa set?); Constant MUM

LDMU HELPSTO EXPLAIN

- Variety in production and Consumption
- Value Theory (Supply>, price <)
- Diamond-Water Paradox
- Law of dd, Law of equimarginal Utility and notion of Consumers' Surplus follow suit

EQUILIBRIUM OF THE CONSUMER

- Single Commodity
$\mathbf{M U x}=\mathbf{P x}$ (Why?)
Trace path
$\mathbf{U}=\mathbf{f}(\mathbf{x})$
Expenditure= Px.x
- Two Commodities:

MUx/Px = Muy/Py (Why)
Trace path

- Multiple Commodities
$\mathbf{M U x} / \mathbf{P x}=\mathbf{M u y} / \mathbf{P y}=\ldots=\mathbf{M U n} / \mathbf{P n}($ Why $)$
Trace Path
Proportionality Rule, Law of Substitution, Law of Maximum Satisfaction, Law of indifference, law of equimarginal utility, Gossen's Second Law

DERIVATION OF DEMAND CURVE

- TU and MU Schedules
- Take the MU Schedule (x, MUx)
- Set MUx=Px
- Jhingan, p. 131 Example

THANK YOU

